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1. Introduction 

 

The literature in the area of interest rate modelling is extensive. Traditional term 

structure models, such as Vasicek (1977) and Cox, Ingersoll and Ross (CIR, 1985) 

specify the short rate process. As short-term and long-term rates are not perfectly 

correlated, the data are clearly inconsistent with the use of one-factor time-

homogeneous models. Chan et al. (1992) demonstrate the empirical difficulties of 

one-factor continuous-time specifications within the Vasicek and CIR class of models 

using the generalized methods of moments.  

 

Litterman and Scheinkman (1991) find that 96% of the variability of the returns of 

any risk free zero-coupon bond can be explained by three factors: the level, steepness 

and curvature of the yield curve. They also point out that the ‘correct model’ of the 

term structure may involve unobservable factors. For instance, it is widely believed 

that changes in the Federal Reserve policy are a major source of changes in the shape 

of the US yield curve. Even though the Federal Reserve policy is itself observable, it 

is not clear how to measure its effect on the yield curve. Litterman and Scheinkman 

(1991) themselves used unobservable factors in their approach by applying principal 

component analysis.  

 

Most term structure models such as Ho and Lee (1986), Hull and White (1990) and 

Heath, Jarrow and Morton (1989) are specified using the risk-neutral measure 

corresponding to a complete market. This makes them appropriate for relative-pricing 

applications, but inappropriate for forward simulations, which needs to take place 

under the market measure in an incomplete market. An exception is Rebonato et al. 

(2005) who focus on yield curve evolution under the market measure and present a 

semi-parametric method to explain the yield curve evolution. Ho and Lee (1986) and 

Heath, Jarrow and Morton (1992) introduced a new approach to interest rate 

modelling in which they fit the initial term structure exactly. Duffie and Kan (1996) 

developed a general theory for multifactor affine versions of these models with 

coefficients obtained analytically. The book by James and Webber (2000) gives a 

comprehensive summary of development to 2000. See also Brigo and Mercurio 

(2007) and Wu (2009) for a more recent summaries.  
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In spite of significant theoretical achievements there are still difficulties with the long-

term forecasting of future yields. The affine arbitrage-free version of the Nelson-

Siegel (1987) model by Christensen et al. (2007) investigates the gap between the 

theoretically rigorous risk-neutral models used for pricing and the empirical 

tractability required by econometricians for forecasting and offers some 

improvements in forecasting performance.  

 

In our research we focus on the development of a model that allows simulation of 

long-term scenarios for the yield curve which include the market prices of risk in the 

dynamics (Medova et al., 2006). Historically low interest rates in recent years have 

emphasized the importance of accurately valuing long-term guarantees (Wilkie et al., 

2004, Dempster et al., 2006). The asset liability management of funds behind the 

guaranteed return products offered by pension providers must be based on yield curve 

modelling (Dempster et al., 2007, 2009). Banks also face new pricing challenges due 

to the increased demand for long-maturity derivatives to hedge insurance and pension 

liabilities (for liability driven investment) and therefore require good long-term 

interest rate models.  
 
Figure 1 shows the development over time of short- and long-term interest rates in the 

Eurozone for the period 1997-2002. Figure 2 plots the weekly standard deviations of 

the yields over the same period.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 3-month and 30-year EU yields for the period June 1997 to December 

2002 
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Figure 2. Weekly standard deviation of yields for the period June 1997 to Dec 

2002 

 

In this paper we focus on a term structure model with the following characteristics:  

• The model is set in a continuous-time framework. This allows implementation 

in discrete time with any length of time step Δt without the need to construct a 

new model each time we change Δt. This is an important requirement for the 

flexibility of forward simulations. 

• Interest-rate dynamics are consistent with what we observe in historical data. 

• The affine class model has a closed-form solution for bond pricing, permitting 

straightforward analytical calculation of bond prices in forward simulation. 

• The short rate is mean-reverting. 

• The model permits a tractable method of estimation and calibration. 

• The model is flexible enough to give rise to a range of different yield curve 

shapes and dynamics (steepening, flattening, yield curve inversion, etc.). 

 

The remainder of the paper is structured as follows. In Section 2, the three-factor 

Gaussian term structure model is introduced and a closed-form solution for bond 

prices derived. Section 3 discusses the state-space formulation of the model and the 

estimation of its parameters using the Kalman filter and numerical likelihood 

maximization. The data and empirical analyses, focussing on fitting the data as well as 

on the simulation potential of the model, are presented in Section 4.  Section 5 applies 
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the 3-factor model to the pricing of a representative consol bond and Section 6 

concludes. 

 

2. Three-Factor Term Structure Model 

 

The term structure model presented in this paper is driven by three factors and can be 

viewed as an extension to the generalized Vasicek model of Langetieg (1980) which 

includes a third factor. The first two factors1 X and Y satisfy the standard Vasicek 

stochastic differential equations with mean reversion rates λX and λY  and levels X

X

μ
λ

 

and  Y

Y

μ
λ

  respectively. The innovation of our model is in the treatment of the 

instantaneous short rate R. The mean reversion of R with rate k has a level that is 

stochastic rather than deterministic and depends on the level of the other two factors 

X and Y driving the model. The X and Y factors may be interpreted respectively as a 

long rate and (minus) the slope of the yield curve from a perceived (instantaneous) 

short rate  R*: = X + Y. 

 

Risk neutral measure 

Starting from the formulation of the model under the risk neutral measure Q we have 

the following three stochastic differential equations (SDEs) for the factors 

 ( ) X
t X X t X td X dt dμ λ σ= − +X W%  (1) 

 ( ) Y
t Y Y t Y td Y dt dμ λ σ= − +Y W%  (2) 

 ( ) ,R
t t t t R td k R dt dσ= + − +R W%X Y  (3)  

where the dW%  terms are correlated. Factoring the covariance matrix of the dW%  terms 

using a Cholesky decomposition into the product of a transposed upper and a lower 

triangular square root matrix results in a new formulation of the form 

 
3

1
( )

i

i
t X X t X t

i
d X dt dμ λ σ

=

= − +∑X Z  (4) 

 
3

1
( )

i

i
t Y Y t Y t

i
d Y dt dμ λ σ

=

= − +∑Y Z  (5) 

                                                            
1 We use boldface throughout the paper to denote random or conditionally random entities. 



 6

 
3

1
( ) ,

i

i
t t t t R t

i
d k X Y R dt dσ

=

= + − +∑R Z  (6)  

where the dZ  terms are uncorrelated. 

 

Closed form solution 

The solution follows the usual steps. We first solve the SDEs for X, Y and R to obtain 

the price of a zero-coupon bond at time t paying 1 at time T 

                                             ( ){ }( , ) exp ,
TQ

t st
P t T ds= −∫ RE                                        (7) 

where Q
tE  denotes the expectation under the risk neutral measure Q conditional on the 

information at time t. As sR  is normally distributed in our model we can use the 

moment generating function for the normal distribution to rewrite (7) as 

 1( , ) exp var ,
2

T T
Q Q
t s t s

t t

P t T ds ds
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − + −⎜ ⎟ ⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

∫ ∫R RE  (8) 

where varQ
t  denotes the conditional variance under Q.  Integrating the solution of the 

SDE for R and taking the expectation and variance of the result gives expressions for 

the two terms in (8) involving (to simplify notation) the parameters 

 

( )

( )

( ).

i

i

i

i

i i i

i i

X
X

X X

Y
Y

Y Y

X Y R
i

X Y

i X Y i

k
m

k
k

m
k

n
k k k

p m m n

σ
λ λ

σ
λ λ

σ σ σ
λ λ

= −
−

= −
−

= + −
− −

= − + +

 (9) 

Hence (see e.g. Medova et al., 2006) 

 { }, ( )( , ) exp ( , ) ( , ) ( , ) ( , )t Ty T t
t t tP t T e A t T R B t T X C t T Y D t T− −= = − − − −  (10) 

with corresponding yield to maturity 

 ,
( , ) ( , ) ( , ) ( , ) ,t t t

t T
A t T R B t T X C t T Y D t Ty

T t
+ + +

=
−

 (11) 

where 

 ( )1( , ) (1 )k T tA t T e
k

− −= −  (12) 
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 ( ) ( )1 1( , ) (1 ) (1 )X T t k T t

X X

kB t T e e
k k

λ

λ λ
− − − −⎧ ⎫

= − − −⎨ ⎬− ⎩ ⎭
 (13) 

 ( ) ( )1 1( , ) (1 ) (1 )Y T t k T t

Y Y

kC t T e e
k k

λ

λ λ
− − − −⎧ ⎫

= − − −⎨ ⎬− ⎩ ⎭
 (14) 

 

2 23
2 ( ) 2 ( )

1

2
( )( )2 ( ) 2

(

1( , ) (1 ) ( , ) ( , )

1 (1 ) (1 )
2 2 2

2
(1 ) ( ) (1 )

2
2

(1

i iX Y

i i X Y

i X

kT X Y X Y

X Y X Y

X YT t T t

i X Y

X Y T tk T ti
i

X Y

X i k

X

D t T T t e B t T C t T
k

m m
e e

m mn e p T t e
k
m n

e
k

λ λ

λ λ

λ

μ μ μ μ
λ λ λ λ

λ λ

λ λ

λ

−

− − − −

=

− + −− −

− +

⎛ ⎞⎛ ⎞= − − − + − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎧⎪− − + −⎨
⎪⎩

+ − + − + −
+

+ −
+

∑

)( ) ( )

( )( ) ( )

( )

2
) (1 )

2 2
(1 ) (1 )

2 (1 ) .

i X

i iY Y

X iT t T t

X

Y i Y ik T t T t

Y Y

k T ti i

m p
e

m n m p
e e

k
n p e
k

λ

λ λ

λ

λ λ

− − −

− + − − −

− −

+ −

+ − + −
+

⎫+ − ⎬
⎭

 (15) 

 

Market measure 

Bond pricing is achieved under the risk-neutral measure Q. However, for the model to 

be used for forward simulations, we need to adjust the set of stochastic differential 

equations so that we capture the model dynamics under the market (or real-world) 

measure P by adding a risk premium to each drift term. The risk premium is given by 

the market price of risk γ  times the quantity of risk and it is generally assumed in a 

Gaussian specification that the quantity of risk is given by the volatility of each factor. 

We assume that the market prices of risk are independent of the time to maturity of 

the bond and are not functionally dependent on the factor being modelled.   

 

The set of processes under the market measure thus satisfy 

 ( ) X
t X X t X X X td X dt dμ λ γ σ σ= − + +X %W  (16) 

 ( ) Y
t Y Y t Y Y Y td Y dt dμ λ γ σ σ= − + +Y %W  (17) 

 { ( ) } ,R
t t t t R R R td k X Y R dt dγ σ σ= + − + +R %W  (18) 

where all three factors contain a market price of risk γ in volatility units. 
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3. Estimation Procedure  

 

The estimation of affine term structure models is known to be problematic due to the 

existence of numerous model likelihood maxima with essentially identical fit to the 

data (Kim and Orphanides, 2005). Babbs and Nowman (1999) applied the Kalman 

filter to estimate the two-factor generalised Vasicek model. Some other examples of 

the literature on filtering methods are Chen and Scott (1993), De Jong (2000), De 

Jong and Santa-Clara (1999), Geyer and Pichler (1997) and Duffee (2002). Most of 

these papers analyze multi-factor versions of the Cox-Ingersoll-Ross (CIR) model 

using mutually independent factors. De Jong (2000) extends this approach to the more 

general class of affine models proposed by Duffie and Kan (1996).  

 

Kalman filter  

Here we describe in detail the Kalman filter estimation procedure (Harvey,1989), for 

our three factor yield curve model in state-space form, which simultaneously 

integrates time-series and cross-sectional aspects of the model. It also allows the 

identification of the market prices of interest rate risk critical for forward simulation.  

 

The general state-space form applies to multivariate time series. The N observable 

variables yt at time t (here zero coupon bond yields of various maturities) are related 

to a vector tα  known as the state vector (here our three yield curve factors) via a 

measurement equation 

 Zα dt t t= + +y ε                           1,..., ,t T=  (19) 

where Z is an N m×  matrix, αt is an mx1 vector, d and tε  are 1N ×  vectors and the 

error term is assumed to consist of serially uncorrelated disturbances with mean zero 

and covariance matrix H, i.e. 

 ( ) 0 var( ) H.t t= =ε εE  (20) 

In general Z, d and H may depend on t. 

Even though the elements of the state tα  are unobservable, they are known to follow a 

first-order Markov process specified by the transition equation 

 1Aα c St t t−= + +α η                           1,..., ,t T=  (21) 
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 where A is an m m×  matrix, c an 1m×  vector, S an m g×  matrix and tη  a 1g ×  

vector of serially uncorrelated disturbances with mean zero and covariance matrix Q, 

that is 

 ( ) 0 var( ) Q.t t= =η ηE  (22) 

Again, in general T, c and S may depend on t, however we will treat here the time-

homogeneous case appropriate to the long term2. 

Two further assumptions will be required to complete the state-space formulation: 

• The initial state vector 0α  has mean 0a and covariance matrix 0P , that is 

 0 0 0 0( ) a var( ) P .= =α αE  (23) 

• The disturbance terms tε  and tη  are uncorrelated with each other in all time 

periods and uncorrelated with the initial state, that is 

 ( ) 0 for all , 1,...,t s s t T′ = =ε ηE  (24) 

and  

 0 0( ) 0 ( ) 0 1,..., .t t t T′ ′= = =ε α η αE E  (25) 

The important concept behind the state space formulation is this separation of the 

noise driving the system dynamics tη  and the observational noise tε . 

 

The Kalman filter is applied recursively in order to compute the optimal estimator of 

the state vector at time t given all the information currently available, which consists 

of the observations up to and including yt . Assuming a Gaussian state space, the 

disturbances and the initial state vector will be normally distributed.  

 

In a state-space model the system matrices depend on a set of unknown parameters (in 

our case 14) referred to as hyper-parameters and defined in Table 1 below. Using the 

Kalman filter to construct the likelihood function and then maximizing it using a 

suitable numerical optimization procedure, we can carry out maximum likelihood 

estimation of the hyper-parameters. The joint probability of a set of T observations 

                                                            
2 This assumption implies that the conditional variance of yield changes is constant over time. A 
number of studies concerned with the relatively short term have found that yield changes are 
conditionally heteroskedastic, cf. Ball and Torous (1999).  Fong and Vasicek (1991) introduced 
stochastic volatility to represent this situation, whose relevance to the long run is questionable, for 
pricing (see also Litterman et al., 1991 and Andersen et al., 2004). 
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can be expressed in terms of conditional distributions. For a multivariate normal 

distribution we have  

 1
1

( ; ) ( ),
T

t t
t

L p −
=

=∏y φ y Y  (26) 

where 1(y | Y )t tp −  is the distribution of ty  conditional on the information at time 1t − , 

i.e. 1 1 2 1Y ( , ,..., )t t ty y y− − −
′= . Since we have a Gaussian model we can write the log-

likelihood function in prediction error decomposition form as 

 1

1 1

1 1log (φ) log 2 log F v F v ,
2 2 2

T T

t t t t
t t

NTL π −

= =

′= − − −∑ ∑  (27) 

where Ft  is estimated by the covariance matrix obtained from the Kalman filter as 

 | 1F ZP Z Ht t t− ′= +  (28) 

and vt  is the vector of prediction errors given by 

 | 1 | 1v y y Z(α α ) ε .t t t t t t t t− −= − = − +%  (29) 

Together with the following two equations, (28) and (29) form the measurement 

update equations 

 1
| 1 | 1a a P Z F vt t t t t t t

−
− − ′= +  (30) 

 1
| 1 | 1 | 1P P P Z F P .t t t t t t t t

−
− − −′= −  (31) 

So first we specify starting values for the parameters. With these starting values we 

run the Kalman filter to obtain estimated yields and a time series for the unobserved 

state variables. Next, the parameters are estimated by maximizing the log-likelihood 

using the state variable path estimates as observations. The optimized parameter 

values are then used as the starting values for the next iteration of the Kalman filter. 

This loop continues until we obtain the optimal parameter estimates by this 

generalized EM algorithm (Dempster et al., 1977). The calibration code is 

implemented in C++ and the optimization is performed using a combination of global 

(Direct, see Jones et al., 1993) and local (approximate) conjugate direction (Powell, 

1964) or derivative-free quasi-Newton (NAG BFGS used in Section 5) numerical 

algorithms. 

 

The starting values for the Kalman filter are given by the mean and the covariance of 

the unconditional distribution of the stationary state vector.  The state vector is 
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stationary if c and A are time invariant and ( )A 1λ < , where ( )Aλ is the leading 

eigenvalue of A. In this case the mean 0a  is given by the unique solution to 

 1
0 0 0a Aa c given by a (I A) c−= + = −  (32)  

and the covariance matrix 0P will be given by the unique solution to the Riccati 

equation 

 1
0 0 0P AP A SQS given by (P ) (I A A) (SQS ).vec vec−′ ′ ′= + = − ⊗  (33) 

 

State space form 

In our case the observable variables are given by risk free (Treasury) yields of 

different maturities, and are related to the vector of unobservable state variables 

( ), ,X Y R  via the measurement equation. The measurement equation is obtained using 

(11) and adding serially and cross-sectionally uncorrelated disturbances with mean 

zero to take into account non-simultaneity of the observations, errors in the data, etc. 

The unobservable state variables are generated via the transition equations, which in 

our case are given by the discretized versions of (1), (2) and (3), using Euler’s first 

order approximation3, i.e. 

 ,( )t t t X X t X X X t XX X t tμ λ γ σ σ+Δ = + − + Δ + ΔX η  (34) 

 ,( )t t t Y Y t Y Y Y t YY Y t tμ λ γ σ σ+Δ = + − + Δ + ΔY η  (35) 

 ,( ( ) ) .t t t t t t R R R t RR k X Y R t tγ σ σ+Δ = + + − + Δ + ΔR η  (36) 

In matrix form the transition equations can be written as 

 A c S ,
t t t

t t t t

t t t

X
Y
R

−Δ

−Δ

−Δ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

X
Y η
R

 (37) 

where  

 
1 0 0

A : 0 1 0
1

X

Y

t
t

k t k t k t

λ
λ

− Δ⎛ ⎞
⎜ ⎟= − Δ⎜ ⎟
⎜ ⎟Δ Δ − Δ⎝ ⎠

 (38) 

                                                            
3 Alternatively, De Jong (2000) presents a general way to obtain the exact discrete-time state 
distributions in affine class models. As the benefits are unclear for our purposes and simulation 
complexity increases, we have not pursued this approach here. 
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( )

c ( )
X X X

Y Y Y

R R

t
t

t

μ γ σ
μ γ σ
γ σ

+ Δ⎛ ⎞
⎜ ⎟= + Δ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

 (39) 

 

0 0

S 0 0

0 0

X

Y

R

t

t

t

σ

σ

σ

⎛ ⎞Δ
⎜ ⎟

= Δ⎜ ⎟
⎜ ⎟⎜ ⎟Δ⎝ ⎠

 (40) 

and tη  is a vector with serially uncorrelated disturbances satisfying 

 
1

( ) 0 var( ) 1 .
1

XY XR

t t XY YR

XR YR

ρ ρ
ρ ρ
ρ ρ

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

η ηE   (41) 

In the current literature, several approaches have been adopted to estimate the 

covariance matrix of the measurement errors. For example, De Jong and Santa Clara 

(1999) used a spherical covariance matrix, H Ih= , whereas Babbs and Nowman 

(1999) use a diagonal matrix. De Jong (2000) uses a full covariance matrix. We adopt 

a diagonal covariance matrix approach, optimizing likelihood using one-at-a-time 

search with the parameters divided into two groups: in the first search the model 

parameters are optimized followed by the minimization of the measurement errors in 

the second search. This process is repeated until convergence. The one-at-a-time 

search method is preferred over the full optimization with 14 model parameters and 

16 measurement errors due to the scale of the optimization problem in the combined 

case. Even though the full covariance matrix is to be highly preferred, we have 

avoided this specification since using yields of 16 different maturities would result in 

136 noise parameters to be estimated.  

 

Estimation results 

For our empirical analysis yields on ordinary (par) fixed-for-floating rate Euro swap 

contracts4 are used as data. Since the swap market is highly liquid with many par 

swaps traded every day, it is possible to obtain rates for a set of swaps with constant 

                                                            
4 A par interest rate swap is a standard contract between two counterparties to exchange cash flows.  
At set time intervals termed reset dates one pays a predetermined fixed rate of interest on the nominal 
value, the other a floating rate, until the maturity date of the contract. The floating leg of swap fixes the 
interest rates for each payment at the rate of a published interest rate. The fixed rate, known as the swap 
rate, is that interest rate which makes the fair value of the par swap 0 at inception. Thus the cash flows 
of the two legs of a par swap are those of a pair of bonds with face value the swap nominal, one fixed 
rate, and the other floating rate. 
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maturities from 1 to 30 years from the market.  From the market swap rates a swap 

curve which gives the rates for constant maturity swaps (CMS) of all durations may 

be constructed each day. Dai and Singleton (2000) point out that these yields are 

preferable for analysis for the following reasons. The swap markets provide ‘constant 

maturity’ yield data, whereas in the Treasury market the maturities of ‘constant 

maturity’ yields are only approximately constant or the data represent interpolated 

series. Additionally, the on-the-run (i.e. just purchased at auction) treasuries that are 

often used in empirical studies are typically on ‘special’ (haircut) in the repo market 

to which they are immediately (albeit temporarily) sold. So, strictly speaking, the 

Treasury data should be adjusted for repo specials prior to any empirical analysis. 

Unfortunately, the requisite data for making these adjustments are not readily 

available, and consequently such adjustments are rarely made. 

 

For estimation and calibration purposes, we first use weekly 1, 3 and 6 month EU 

LIBOR and Euro swap data for the period June 1997 to December 2002 (a total of 

292 time points) for 16 different yields with maturities equal to 1, 3 and 6 months and 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 and 30 years. The sample period was determined on 

one end by the unavailability of reliable long-term swap data for years prior to 1997 

and on the other end by its use for backtests over the difficult 2003-2004 period in the 

bond markets5. We interpolate the swap curve linearly to obtain swap rates at all 

maturities and then use the data recursively from the 1 month rate to back out a zero-

coupon bond yield curve from the basic swap pricing equation for each week6. This 

derived data is the input for model calibration. The estimation results are presented in 

Table 1 all have plausible values. Bearing in mind that the factor y is a negative yield 

curve slope between a market expected short rate and the long rate, all the signs in 

Table 1 are as expected. All parameter estimates are statistically significant at the 1% 

level, unlike the estimates found by Babbs and Nowman (1999), who looked at 

Kalman filtering generalized Vasicek models. However they only used yields of eight 

different maturities and Geyer and Pichler (1999) show that a larger number of 

maturities is important to improve the precision of the parameter estimates. Shocks to 

                                                            
5 But see Section 5 where more recent data up to 2008 is used. 
6 We also evaluated quadratic interpolation but deemed the negligible improvement in accuracy not 
worth the considerable increase in computational burden. 
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the long rate and the expected yield curve slope decay here with half lives over 4 

years and about 6 months respectively. 

 

Euro Data Estimated Value Standard Error 
Long term risk neutral mean X X Xμ λ  0.199 1.69E-04 

Long term risk neutral mean Y Y Yμ λ  -0.134 1.69E-04 

Speed of mean reversion X Xλ  0.161 1.03E-03 

Speed of mean reversion Y Yλ  1.332 6.87E-03 

Speed of mean reversion R k  0.117 1.64E-03 

Volatility X Xσ  0.030 1.89E-04 

Volatility Y Yσ  0.186 9.80E-04 

Volatility R Rσ  0.006 2.26E-04 

Correlation X and Y XYρ  -0.642 6.94E-03 

Correlation X and R XRρ  0.177 1.82E-02 

Correlation Y and R YRρ  -0.540 1.81E-02 

Market price of risk for X Xγ  0.556 3.91E-03 

Market price of risk for Y Yγ  -1.017 5.50E-03 

Market price of risk for R Rγ  0.096 1.65E-02 

 

Table 1.  Estimated parameters using the Kalman filter 

Table 2 provides the estimated standard deviations ih  of the measurement errors, 

where ih  is the ith diagonal element of the covariance matrix H. In particular, these 

standard deviations range from less than 1 basis point for the seven-year yield to 24 

basis points for the thirty-year rate. These measurement errors are all significant at the 

1% level and compare in magnitude to those in Babbs and Nowman (1999) and very 

favourably to studies by, for example Chen and Scott (1993) and Geyer and Pichler 

(1996), who both estimate the multifactor Cox-Ingersoll-Ross model on U.S. data. 
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 Maturity Estimated Value Standard Error 

1h  1 month 1.57E-03 6.63E-05 

2h  3 months 8.64E-04 3.81E-05 

3h  6 months 1.55E-04 3.19E-05 

4h  1 year 6.71E-04 2.96E-05 

5h  2 years  5.08E-04 2.15E-05 

6h  3 years  2.85E-04 1.21E-05 

7h  4 years 1.49E-04 7.03E-06 

8h  5 years 4.96E-05 4.59E-06 

9h  6 years 6.58E-05 2.89E-06 

10h  7 years 1.00E-05 3.83E-06 

11h  8 years 9.44E-05 4.1E-06 

12h  9 years 1.75E-04 7.63E-06 

13h  10 years 2.94E-04 1.28E-05 

14h  15 years 7.45E-04 3.14E-05 

15h  20 years 1.23E-03 5.32E-05 

16h  30 years 2.37E-03 1.03E-04 

 

Table 2.  Measurement errors 

 

A general limitation of affine yield curve models with mean reversion is that the 

volatility of long rates tends to decay too rapidly with maturity relative to that 

exhibited by market data. Our use of maturity specific volatilities for the measurement 

errors compensates for this effect. Indeed, the standard deviation of the measurement 

errors for the 15, 20 and 30 years rates shown in Table 2 are significantly greater than 

those for the other maturities. More generally, and similar to Geyer and Pichler 

(1996), the error standard deviations exhibit a distinct U-shaped pattern as depicted in 

Figure 3. A possible explanation for this might be that the observed data for medium 

range maturities are highly correlated and therefore easier to fit. The short rate 

behavior in Figure 3 also indicates that the use of the one-month yield as a proxy for 

the instantaneous short rate is likely to give rise to problems. In general, 1 month and 
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6 month Libor rate measurement errors appear inconsistent with those for rates 

derived from the swap data for maturities in years, probably due to liquidity factors. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.   Measurement error of the fitted yields 

 

Factor loadings 

Like Babbs and Nowman (1999), we also look at the factor loadings of our three-

factor model as a function of maturity to determine the nature of the factors calculated 

by the Kalman filter. The resulting curve for each factor represents the change in yield 

caused by a shock to that factor of one standard deviation magnitude so that all shocks 

are equally likely events (Litterman and Scheinkman, 1991). As factor loadings 

correspond to orthogonal Brownian motions, rather than those with correlated 

innovations, we first use Cholesky decomposition as described in Section 2 to 

transform the stochastic differential equations.  For comparison with Babbs and 

Nowman (1999), we also impose the following three additional restrictions: the 

second factor has zero impact on the term structure at approximately the five-year 

maturity and the third factor loading disappears at about two and twelve years. This 

gives a set of nine equations in the nine volatility parameters of (4), (5) and (6). 

 

Figure 4 plots the factor loadings for the three-factor model. Whereas Babbs and 

Nowman found that their third factor loading had a negligible effect, we find all three 

factors have a significant impact on the yields of all maturities.  We also find that the 

range of the impact of the factors R, Y and X on the yields is similar to that found by 
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Litterman and Scheinkman (1991) using principal component analysis on weekly US 

data with these three factors interpreted as level, curvature and steepness respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Factor loadings of the three-factor model 

 

4. Simulation  

 

One of the objectives of this paper is to propose a term structure model that is 

tractable in forward simulations through closed form yields given factors but can still 

capture the salient features of the yield curve.  

 

Yield curve statistics 

To evaluate our model initially, we performed an out-of-sample backtest over 2003. 

Using the historical 52 weekly data points for the yields in 2003, we calculated the 

mean level and the weekly standard deviation for each of the sixteen maturities. We 

then simulated forward from January 2003 to beginning January 2004 using the 

parameter estimates given in Table 1. In total 500 scenarios were generated and for 

each scenario the mean and standard deviation over time for the sixteen maturities 

was calculated. Averaging over all scenarios finally gives an average mean and 

standard deviation for the simulated yields.  

Figure 5 plots the mean levels of the yields for both the historical and the simulated 

data and Figure 6 similarly plots the standard deviations. As can be observed from 
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Figure 5 the two sets of means closely match each other.  Figure 6 shows that the 

simulated standard deviations slightly over-estimate the historical ones.  However, 

yields were considerably less volatile in 2003 than over the 1997-2002 in-sample 

period (cf. Figure 2) which would explain this discrepancy.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Mean level of yields over 2003 for historical and simulated data 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Weekly standard deviation of yields over 2003 for historical and 

simulated data 
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Yield curve dynamics 

Another objective of this work was to develop a model that is able to simulate the 

various yield curve dynamics encountered in practice, e.g. steepening, flattening and 

inversion.  Figures 7 and 8 show historical yields up to 2002 followed by simulated 

yields for two years to 2005 on specific yield curve scenarios selected from the 500 

simulated7.  Figure 7 demonstrates that the model can simulate yield curve steepening 

and flattening, while Figure 8 demonstrates that it can simulate yield curve inversion. 

Indeed, both visual and statistical analysis of the 500 simulated scenarios (not 

presented here in the interests of brevity) demonstrate that the model’s simulated 

dynamic behavior is consistent with the historical behaviour of the yield curve over 

the out-of-sample period. This has been true for the many different applications with 

different time steps for which we have used it. 

 
 Figure 7.  Forward simulation showing yield curve steepening and flattening  

                                                            
7 Given the relatively low yield volatilities depicted in Figure 6 and the yield levels in Figure 5 we 
concluded that the probability of negative yields with our Gaussian model under the market measure is 
negligible. Using values from the data of Figures 5 and 6 these correspond to a minus 10 standard 
deviation event. Our decision is borne out by the representative paths in Figures 7 and 8 and in fact 
none of  the 500 scenarios simulated produced negative yields over the out-of-sample period. However, 
see Abu-Mostafa (2001) for a technique for reducing this probability over longer simulation horizons. 
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  Figure 8. Forward simulation showing yield curve inversion  

Application of the yield curve model to the risk management of portfolios of 

guaranteed investment products involving simulations with a monthly time step may 

be found in Dempster et al. (2006, 2007, 2009). 

 

5. Pricing Consol Bonds 

 

In 2005 a number of European banks8 issued floating rate callable consol bonds as a 

means of raising Tier 1 regulatory capital.  In the absence of the exercise of the call 

option by the bank at any time after a specified number of fixed interest payments, 

these bonds are perpetual, i.e. they have an infinite maturity, and their holders have 

purchased an indefinite income stream in exchange for their capital.  After the period 

specified the fixed rate payable by the banks to the holder on the nominal face value 

of the bond is converted to a floating rate which is a multiple of the CMS-spread, 

usually the difference between the 10 and 2 year constant maturity swap (CMS) rates, 

on the interest payment fixing date.  In addition, these bonds’ payments normally have 

a cap and a floor, possibly in terms of another floating money market rate such as 3-

month Euribor.  In the worst case, when the swap curve is flat (see Figure 10) and the 

spread negligible, the bond holder will receive the floor rate.  

                                                            
8 For example, in 2005 Deutsche Bank issued a € 900 M tranche of bonds at par to face value or 
nominal. This revives an instrument that has not been in favour since the Russian Revolution, when 
Tsar Nicholas’ consols became worthless, although UK consols initiated in the 18th century are still in 
existence (with reduced fixed coupon).  There is little current literature on their pricing when coupon 
rates are floating. 
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The details of over-the-counter (OTC) contracts are important and we present here a 

representative example of a callable CMS-spread consol hybrid product used to 

generate Tier 1 capital by the issuing bank. 

 

Example 

Nominal (face) value:                                  € 1.5 M   

Commencement date of contract:           28th January 2005 

Maturity:                                                      perpetual (unless called at 5 years or after) 

The bank pays a fixed rate of 6 % per annum in arrears for 5 years. The interval 

between payments on the 28th January each year is 1 year. At these dates the annual 

floating rate payments in arrears are calculated as 

 

− =4( 10 2 ) 6,7,...,i iCMS CMS i                 

where CMS10 is the 10 year swap rate (base rate 10) and CMS2 is the 2 year swap 

rate (base rate 2) and ( 10 2 )i iCMS CMS− is referred to as the spread. This floating rate 

coupon is capped at 10 % per annum and floored at 3.5 % per annum.  As the spread 

decreases to 0 the bondholder receives only the floor rate of 3.5 % per annum. 

 

The expected value of this bond for the purchaser (i.e. investor) is embedded in their 

belief about future movements of the swap curve over time. Historical swap curves 

illustrate that the expected and realized market rates may differ significantly. Figure 9 

shows the movements of swap curves in 2005 and 2006. 

EU constant maturity swap curves
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Figure 9. Illustrative swap curve movements 
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It is obvious that interest rate and, more generally, swap curve forecasting rests at 

the centre of CMS-spread instrument pricing for both seller and purchaser. 

Analysis of the risk of the proposed bond depends upon the counterparties abilities 

to model and simulate forward the yield and swap curves at the payment dates 

under the market measure. The broad movements of the spreads between 10 and 2 

year maturities for the yield curve (for zero-coupon Treasury bonds) and the swap 

curve are similar.  However, the swap curve spread has extra volatility due to the 

market’s changing views on general counterparty creditworthiness – essentially 

AA credit rating spread volatility.  

Depending upon market conditions the credit spreads of consols similar to our 

example appear to be associated with credit ratings which vary between A and 

BB in Standard and Poor (S & P) terms.  However some of this market spread 

may be due to the mainly individual investors who bought and are currently 

trading these perpetual securities evaluating them as relatively long but finite lived 

bonds.  For example, currently valuing the perpetual bond as having a 25 year 

maturity without credit risk produces a discount to face value of about 30 %, near 

the current trading range. 

 

The holder of a CMS-spread consol bond is in effect giving the issuer a levered call 

option on the flattening of the yield curve – i.e. the decrease of the spread – which 

normally follows sharp rises in short term rates.  Global macroeconomic conditions in 

the late 2004 to early 2005 period in which these contracts were issued clearly 

indicated sharply increasing short rates, a process that had already begun in the US at 

the time and followed in the EU only shortly thereafter.  Moreover this was recently 

the situation due to credit market turmoil with short rates extremely high.  However, 

the situation from January 2011 forward is naturally unclear at this point.  There exists 

considerable asymmetry of information between issuer and bondholder and the latter 

may genuinely be convinced that “the yield curve will not become significantly 

flatter” in the long run to yield around 6 % in perpetuity. 

 

Calibration 

The data used to calibrate the model consists of freely available daily euro 3 and 6 

month LIBOR and Euro swap data with the same maturities as in Section 3 from the 
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start of 1999 to the end of 2007, a total of 2,133 observations9.  Although the 

historical EU data often used by banks goes back to 1992, this data has had to be 

constructed prior to the introduction of the euro in 1999.  In any event, missing the 

sharp short rate rises of the early 1990’s in our data will tend to make our valuation 

estimates conservative. We again interpolate the swap curve linearly to obtain swap 

rates at all maturities, then use the 3 and 6 month EU LIBOR rates and the swap curve 

to recursively back out a risk free zero-coupon bond yield curve from the basic par 

swap pricing equation for each day.  This derived data is the input data for estimation 

of the parameters of our 3-factor yield curve model (which we shall do at the date of 

bond issue and a more recent date). From this we can compute the yield curve based 

on the posterior mean for the three factors R, X and Y at historical dates in our data 

and compare this to the actual yield curve deduced from the (linearly interpolated) 

historical swap curve on that day.  This is shown below in Figure 10 for a 

representative date, 28 July 2003, after calibration to the data up to consol bond 

inception at 28 January 200510. 

 

 
Figure 10. Yield curve fit for 28 July 2003 

 

                                                            
9 We use daily data for consol bond valuation to conform to market practice by issuers who value fixed 
income instruments incorporating yield curve data on (or just before) the day of sale. Our example here 
is representative of a number of consol bonds we have valued initially on different dates in the period 
2004 to 2006. 
10 Note that these fits on representative days do not always accurately capture the long end of the yield 

curve, which might require a fourth factor.  They are however acceptably accurate up to 10 year 

maturity and in any event generally err on the conservative side, by producing lower discount rates. 
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For such calibrations on daily data the parameter estimates for the model have similar 

characteristics to those given for weekly data in Tables 1 and 2 in Section 3. Although 

long run means and mean reversion speeds are quite stable, market prices of risk and 

volatilities vary with calibration end date. Moreover, as we shall see below, the 

resulting consol bond Monte Carlo valuations vary considerably with the initial yield, 

and corresponding swap, curves – actually their model approximations at the 

calibration end date – from which forward simulation paths for valuation on that date 

begin. 

 Ignoring for the moment the ability of the bank to call (cancel) the bond, to find its 

fair price in the absence of credit risk we simulate the swap curve forward under the 

risk adjusted probabilities (i.e. with factor market prices of risk set to 0) using our 

interest rate model. 

 

We compute the floating payment on each simulated scenario at each payment date 

and average across scenarios the total of the discounted payments along each random 

scenario. This is the standard Monte Carlo pricing methodology for European-style 

financial instruments.  We used 50,000 paths for pricing the contract. 

 

Clearly the present value of an infinite stream of payments from this consol cannot be 

obtained mathematically and must be valued numerically over a finite horizon.  We 

chose this horizon by the criterion of the maturity at which the present value at 

inception of the remaining coupon payments thereafter (assumed to be at the 10 % cap 

and discounted conservatively at 2.5 % per annum) is less than one percent of face 

value, which occurred at 241 years. 

 

With the right to cancel in place, the fair value is given by the expected discounted 

value of the sum of the coupon payments with the risk neutral probabilities under the 

assumption that the bank uses an optimal call strategy.  Since determining the exact 

optimal cancellation rule is computationally difficult, we use a sub-optimal 

cancellation rule derived using the popular method of Andersen (1999). Due to the 

fact that only the bank has the right to cancel, the sub-optimality of our cancellation 

strategy may lead to an over estimation of the value of contract from the viewpoint of 

the bond holder. 
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In brief, Andersen’s method relies on a score function ( , , )ts r x y which should be low 

if cancellation is likely to be correct and seeks a cancellation rule of the form: cancel 

if ∗< tt ss .  The exercise thresholds ∗
ts  are determined recursively based on a separate 

set of random paths for (R, X, Y).  We used 10,000 paths to estimate the optimal 

cancellation thresholds. Andersen proposed a simple method for determining good 

values for ∗
ts .  For our calculations we take ∗

ts  to be the discounted value of all the 

remaining swap payouts under the assumption that (R, X, Y) evolves according to its 

expected path. 

 

We further improve the cancellation strategy as follows.  Before evaluating the score 

function we compute an accurate approximation to the expected value of the next 

payout (since this is the payment committed to by opting not to cancel the contract at 

this time) by linearizing the expression for the spread (CMS10 - CMS2) at the end of 

the next period as a function of (R,X,Y). This leads to an integral involving two 

correlated Gaussian random variables which can be evaluated in closed form.  If the 

expected next net return to the bank on the face value relative to the coupon paid to 

the bondholder is positive it cannot be correct to call the bond and it is better to wait 

for at least one more coupon payment. 

 

To handle the credit spread due to the creditworthiness of these subordinated consol 

bonds we assume a constant per annum default rate appropriate to the credit class.  

This class could possibly be defined from market conditions (current yield curve) and 

similar instruments trading at different discounts due to different terms (nominal rates 

over 3-month EU LIBOR or EURIBOR).  We might therefore have chosen to use the 

corresponding default rate at a constant 2.3 % per annum which represents the margin 

over EURIBOR of the interest rate paid for similar consol bonds issued at par but on 

more favourable terms – and currently trading near par – by other institutions than our 

issuing bank in the same period.  This corresponds to a Standard and Poor (S&P) BB 

credit rating historical default rate. However, this default rate in inconsistent with the 

A credit rating initially assigned to this bond and below we shall actually approximate 

the credit discount implied by the market for a 241 year maturity bond. 
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NPV value at risk 

Value at risk (VaR) can be computed at any point in time for the bondholder from a 

simulated distribution of the present value (PV) of all future (net) payments of the 

deal treating the initial face value payment as a sunk cost to the bond holder.  We 

compute value at risk for the deal at inception and about three years later using 

exactly the same Monte Carlo methodology as that used for pricing, except that the 

market probabilities, involving estimates of the constant market prices of risk for the 

three factors, are used.  We then compute normalized histograms of deal present 

values and find the 99 % VaR level (relative to 1 representing par or face value) for 

both the issuing bank and the bondholder.  Since the factor market prices of risk are in 

fact processes, the standard deviations of their constant estimates are high relative to 

those of other parameters.  Moreover, the estimates of the deal present value 

distributions are sensitive to the estimated value of the market price of risk for the 

short rate used to discount future payments (Cairns, 2004).  We have attempted to 

overcome this effect in the estimation procedure by penalizing deviations from the 

(estimated) long run (asymptotic) short rate, which can be obtained in closed form as 

a function of the model parameters and is estimated from the historical three month 

EURIBOR and euro LIBOR rates. 

 

Cash flow analysis 

The swap rates for CMS2 and CMS10 (Figure 11) evolved significantly over the two 

years 2005, 2006 which moved the spread beyond (i.e. to  0.006 on 21.12.06 ) its 

historical minimum value up to 2004 of 0.3250 %. This has had a dramatic effect on 

the forecast floating rate coupon payments to the bond holder after the 5 year 6 % 

fixed rate period (see Figure 13). 
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Figure 11. Base rate and spread evolution 

 

Figure 12 presents the results of simulation of the coupon payments with the mean 

and range given by one standard deviation which seems beneficial for the bond holder 

at inception on 28th January 2005 assuming no bond call or default by the bank. Our 

model predicts that the evolution of this distribution of net payments from inception is 

not symmetrical about its mean, which falls slightly over the life of the bond. Note 

that the first five points in Figure 12 represent the first five fixed annual payments to 

the bond holder. 

 

Interest payments to bond holder from 28.01.2005 over 51 years
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Figure 12. View of forward coupon payment distribution on 28.1.05 
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Interest payments to bond holder from 20.12.2007 over 49 years
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Figure 13. View of forward coupon payment distribution on 20.12.07 

 

Figure 13 shows the simulation of the coupon payments for the bond, assuming no call 

or default by the bank, from the model calibrated on data to 20th December 2007 – a 

year when significant changes in the spread occurred (see Figure 11).  In fact the long 

run stationary distribution of the spread under the market probabilities is 1.03 % per 

annum with corresponding 3-month short rate of 3.11 % per annum.  This spread is 

similar to the 1.47 % historical average spread from 1995 to 2005 but lower due to more 

recent history in which short rates were rising and long rates were depressed by global 

liquidity prior to the credit crisis. Under the risk discounted (pricing) probabilities (risk 

neutral measure) the spread becomes -3.3 basis points with short rate 8.42 % per 

annum. Market moves over the two years from inception have been in a direction 

which has made the non-credit-risk adjusted CMS-spread bond deal costly in the 

outcome for the bond holder at 20th December 2007 at now less than 6 % per annum 

in expectation. 

 

Deal valuations and values at risk 

 
Market price of bond at inception (8.1.05) 

 

86.05 % of face value or 

€ 1.291 M 
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Six standard deviation pricing uncertainty 

(99.7 % confidence interval): 

85.57 % to 86.53 % of nominal or 

€ 1.284 M  to  € 1.298 M 

 

The call option at inception is always used prospectively.  

 

Value at risk at inception to investor at the 99 % 

level: 

46.27 % of face value recovered, i.e. 

53.73 % or € 806 k lost 

  

Market price of bond (20.12.07) after two 6 % 

coupon payments 

 

80.06 % of face value or  € 1.207 M 

 

Six standard deviation pricing uncertainty 

(99.7 % confidence interval): 

79.67 % to 80.44 % of face value or 

€ 1.195 M  to  € 1.206 M 

 

Value at risk on 20.12.07 to investor at 99 % level: 48.97 % of face value recovered, i.e. 

51.03 % or € 765 k lost 

  

 

A number of observations are immediate.  First, the deal was not initially fairly priced 

at par.  Approximately 14 % of face value, or € 210 k was collected up front from the 

bond holder by the bank.  The initial fair price of 86 % of face value is a higher than 

current market prices for these bonds which are currently in the range 60 to 65 % – 

perhaps due to higher credit risk or the individual investor finite horizon effect 

discussed above. 

 

Secondly, in the absence of default, the bank’s call (cancellation) option is optimally  

always used.  The call date varies by scenario from 5 to 224 years from inception with 

an average of  about 18 years. 

 

Thirdly, the 99 % VaR to the bondholder involve considerable losses and depend 

critically on market conditions.  Note however that 30% of the face value is recovered 

in the five fixed payments before discounting.  The situation is illustrated graphically 

in Figures 14 and 15 which give the distributions of present value (PV) of future 

payments as a proportion of nominal (1 represents face value).  These figures show 

the asymmetry in these distributions with a long thin upside tail in favour of the bond 

holder but also a significantly probable downside in favour of bank.  From inception 
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at 28.1.05 to 20.12.07 the expected present value has been reduced significantly from 

1.154 (115.4 % of face value) to 1.055 (105.5 %) although the more appropriate 

median present value has been reduced somewhat less. 

 
Figure 14. Distribution of total discounted payments to investor in multiple   of 

face value at 28.1.05 

 
 

Figure 15. Distribution of total discounted payments to investor at 20.12.07 

 

Comparison with risk free bonds 

By comparison with the 115.4  % PV of future payments at inception of the actual 

contract on 28th January 2005 (Figure 14), the corresponding figure for an 18 year 

maturity 6 % fixed coupon risk free bond (with no call option) is 120.6 %.  The 5.2 % 
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reduction represents the balance between the average effects of the call option and the 

potential for coupon payments near the floor (reducing) and the potential for higher 

coupon payments of up to 10 % over periods when the bank optimally calls the 

perpetual bond later than the average 18 years (enhancing). Nearly three years later, 

on 20th December 2007 (Figure 15) when the PV of future payments is only 105.5%, 

the corresponding reduction relative to a 15 year maturity 6% risk free bond exceeds 

15%.  At this date the likelihood of the bond holder not even recovering the original 

investment has risen to nearly 50%. 

 

Credit risk analysis 

Finally, let us consider the effects of credit risk on the current market price of this 

consol bond. Taking account of credit risk for such a perpetual bond from a 

necessarily (short) finite amount of historical default data is fraught with error. We 

have chosen to use the maturity of 241 years of our finite maturity approximation to 

obtain at least a plausible value for the credit risk discount. The difference between 

our market risk valuation of 80% of face value on 20th December 2007 and the market 

value of the bond on that day of 60% allows 20% of face value as credit risk discount 

and / or behavioural finite horizon and tax effects. Assuming that this figure is 

essentially due to pure credit risk implies that the market on that day was assuming 

approximately a default discount rate of 8.3 bp per annum11, which would lead to a 

credit risk discount over 241 years of 20.1%. 

 

The only rational explanation for the purchase of this representative consol is that 

bond holders believed that their coupon payments would genuinely not be 

significantly reduced from the first five at 6 %.  As we have seen (in Figure 12) this 

would have been a reasonable expectation based on history at inception, but actual 

market outcomes – possibly revealed to the issuing bank in the forward economic and 

market views at inception – have further moved strongly against the bond holders (see 

Figure 13).  The result is that an investor is left holding an illiquid credit risky 

perpetual bond which is currently trading at a 30 % to 40 % loss on their investment 

                                                            
11 This corresponds to the historical four year S&P cumulative default rate for the bond’s A rating 

which suggests that the market was optimistic regarding the bank’s possible default on the contract 

over possibly nearly two and a half centuries. 
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with the prospect in two years time of possibly receiving only 3.5 % annual coupons 

due to CMS-spreads of only a few basis points.  

 

Obviously these credit risky structural floating rate consol bonds provide investors 

with returns far inferior to risk-free fixed rate bonds of comparable expected 

maturities issued in the same period. However the complexity of these instruments, 

which require sophisticated Monte Carlo analysis to price, has by and large been 

ignored by investors. Indeed, initially investors appear to have treated these securities 

naively, and sub-optimally, as short maturity risk-free fixed rate bonds which would 

be called by banks soon after all their initial fixed rate payments were made. 

 

 

6. Conclusion 

 

The objective of this paper is to specify a model that captures the salient features of 

the whole term structure, rather than one that just focuses on the short-term interest 

rate. It also has to be tractable in order to form a basis for asset pricing applications 

and forward simulations for asset liability management. To this end, we consider a 

Gaussian three-factor continuous-time model within the affine class with a closed-

form solution for bond prices.  

 

For our empirical analysis, the model is expressed in a state-space formulation which 

allows us to take into account both the cross-sectional and time-series information 

contained in the term structure data and to use the Kalman filter and numerical 

likelihood maximization recursively to estimate the parameters. 

 

The model explains the cross-section of interest rates well with reasonably small yield 

errors. We also show that in forward simulations this model gives rise to a wide and 

realistic range of future interest rate scenarios, as shown by both a backtest and 

simulation results involving flattening / steepening / inversion of the yield curve. 

 

We apply the model to pricing perpetual callable consol bonds with structured 

floating coupon payments, based on the 10-2 year constant maturity swap spread, 

using forward simulations over a 241 year horizon with a daily time step. As a result 
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we find these credit risky floating rate consol bonds issued by banks to raise Tier 1 

capital in the 2004-2005 period to be initially mispriced and with lower expected 

yields than comparable finite horizon sovereign fixed coupon bonds. 
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